連續且可導的條件

2022-12-24 16:35:49 字數 427 閱讀 7051

連續且可導的條件:

1、函式在該點的去心鄰域內有定義。

2、函式在該點處的左、右導數都存在。

3、左導數=右導數注:這與函式在某點處極限存在是類似的。

擴充套件資料

不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),xf'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的'過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。

反之,已知導函式也可以倒過來求原來的函式,即不定積分。微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

語音朗讀